

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

Miniature Proportional Valves Precision Fluidics

ENGINEERING YOUR SUCCESS.

Innovative solutions for health care success

ENGINEERING YOUR SUCCESS.

When you partner with the global leader in motion and control technologies, expect to move your business and the world forward. From miniature solenoid valves to highly integrated automation systems, our innovations are critical to life-saving medical devices and scientific instruments used for drug discovery and pathogen detection. Not to mention, critical to decreasing time to market and lowering your overall cost of ownership. So partner with Parker, and get ready to move, well, anything.

Table of Contents

product

page

C C C C C C C C C C C C C C C C C C C	VS0®	Thermally Compensated Miniature Proportional Valve Thermally compensated design provides precise flow control up to 56 slpm	4
	VS0 [®] LowPro	Low Profile Proportional Valve Controls the flow rate of inert gases. Typical flow rates up to 50 slpm with a maximum of 1.5 Watts at room temperature	12
	VSO [®] Low Flow	Thermally Compensated Low Flow Miniature Proportional Valve Thermally compensated design provides precise controllable low flow of 1 to 500 sccm	21
	VSO [®] -MI	Thermally Compensated Miniature Proportional Valve High performance, efficient design provides precise flow control up to 40 slpm	26
Parker	MD PRO	Miniature Proportional Valve Economical design provides pressure and flow control up to 56 slpm	34
	Lone Wolf	Normally Open Miniature Proportional Valve Normally open design provides rapid response with stable and accurate performance	41
	VSO® MAX HP	High Flow Miniature Proportional Valve Provides maximum flow capabilities greater than 200 slpm and 45 psi	49
	HF PRO	High Flow Miniature Proportional Valve Efficient design delivers up to 60 slpm of flow at a pressure of 50 psi (3.4 bar)	55
	Value Added	Application-Specific Solutions	61

VSO® Miniature Proportional Valve Thermally Compensated Proportional Valve

Typical Applications

- Gas Chromatography
- Mass Spectrometry
- Ventilators
- O₂ Concentrators/Conservers
- Anesthesia Delivery & MonitorsPressure & Flow Control
- Pressure & Flow Con
 Mass Flow Control
- Mass Flow Control

Product Specifications Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, & others

Operating Environment: 32 to 131°F (0 to 55°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C) Length:

1.79 in (45.3 mm)

Width:

0.63 in (15.9 mm)

Height:

0.67 in (17.0 mm) **Porting:**

1/8" (3 mm) barbs or 10-32 female; manifold mount (available with screens)

Weight:

2.2 oz (63 g)

The VSO® miniature proportional valve provides enhanced flow control for applications where precise control flow control is required up to 56 slpm. The VSO® miniature proportional valve provides precise flow control of gas in proportion to input current. The valve can be controlled with either DC current or pulse width modulation along with closed loop feedback to deliver optimal system performance. Together with its ability to provide precise control over varying temperatures and media types, the VSO® miniature proportional valve is ideally suited for manufacturers of medical and analytical equipment.

Features

- Enables precise flow control for improved instrument accuracy
- Thermally compensated to maintain precise flow over a wide range of media
- Computer automated calibration and serialization for performance traceability
- Cleaned for Oxygen and Analytical Service use
- Proven performance tested to 100 million life cycles
- RoHS compliant 🖌

Physical Properties

Internal Volume:

0.031 in³ (0.508 cm³) **Filtration:** (Suggested and Available) Models 1 & 2: 17 micron Models 3, 4, 5, & 6: 40 micron

El anna	Dive	Li a sa s
FIOW	Direc	rion:

Inlet Port	Port 2
Outlet Port	Port 1

Electrical

Power: 2.0 Watts maximum

2.0 Walls maximun

Voltage:

See Table 2

Electrical Termination:

18" (45.7 cm) Wire Leads, PC Mount, Quick Disconnect Spade

Wetted Materials

Series 11 Body: 360 HO₂ Brass or 300 Series Stainless Steel

Series 25 Body: Nickel-Plated Brass

Stem Base: 430 FR Stainless Steel and Brass

360 HT All Others:

FKM; FFKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values:

Internal 0.2 SCCM of He with a differential pressure of 1 psid, 25 psid and 150 psid

External 0.016 SCCM of He at 150 psi

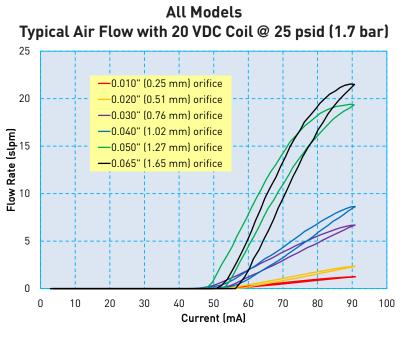
Pressure:

0 to 50 psi (3.45 bar) 0 to 75 psi (5.17 bar) 0 to 100 psi (6.89 bar) 0 to 150 psi (10.34 bar) See Table 1

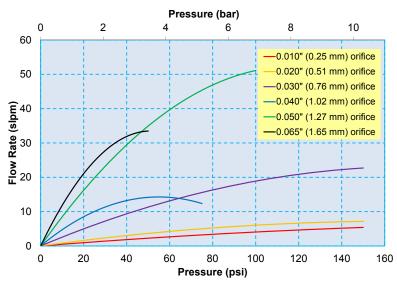
Vacuum:

0-27 in Hg (0-686 mm Hg)

Orifice Sizes:


0.010 in (0.25 mm) 0.020 in (0.51 mm) 0.030 in (0.76 mm) 0.040 in (1.02 mm) 0.050 in (1.27 mm) 0.065 in (1.65 mm)

Hysteresis:

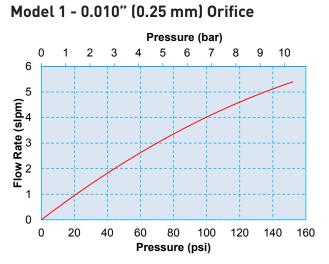

7% of full scale current (Typical) 15% of full scale current (Max)

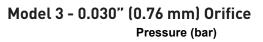
VSO is a registered trademark of Parker Hannifin Corporation.

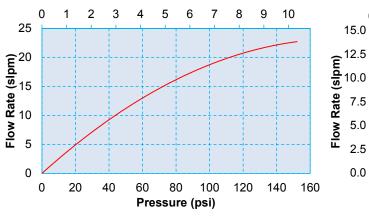
VS0[®] Thermally Compensated Proportional Valve Typical Flow Curve

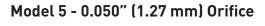
Models 1-6 Pressure vs Flow Curves

Pressure and Flow Capabilities

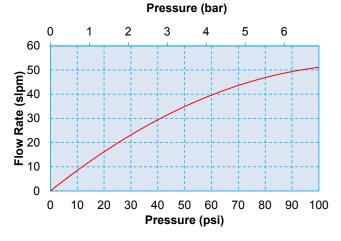

Table 1

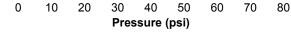

Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential		
0.010 in (0.25 mm)	150 psig (10.34 bar)	150 psid (10.34 bar)		
0.020 in (0.51 mm)	150 psig (10.34 bar)	150 psid (10.34 bar)		
0.030 in (0.76 mm)	150 psig (10.34 bar)	150 psid (10.34 bar)		
0.040 in (1.02 mm)	150 psig (10.34 bar)	75 psid (5.17 bar)		
0.050 in (1.27 mm)	150 psig (10.34 bar)	100 psid (6.89 bar)		
0.065 in (1.65 mm)	150 psig (10.34 bar)	50 psid (3.45 bar)		





VSO[®] Sizing Charts





arker

Model 2 - 0.020" (0.51 mm) Orifice Pressure (bar)

5

4

6 7 8 9 10

0

7.5

Flow Rate (slpm) 5.2 5.2 5.2

0.0

0

0.0

15.0

2.5

0.0

20

1.0

40

60

2.0

80

Pressure (psi)

Model 4 - 0.040" (1.02 mm) Orifice

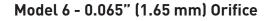
Pressure (bar)

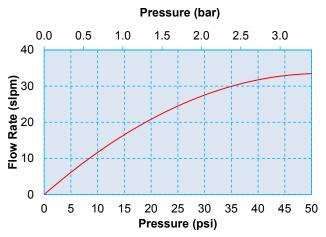
3.0

100

120

4.0


140


5.0

160

1

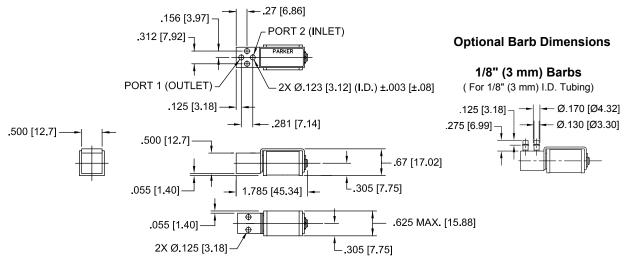
2 3

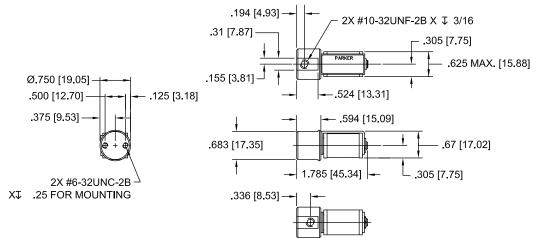
6

Pneumatic Interface

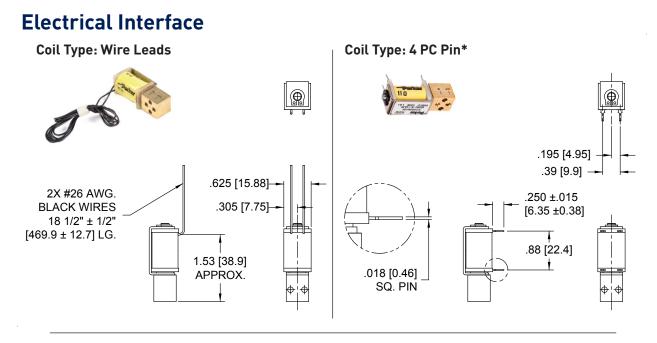
VSO[®] Series 11 Manifold Mount

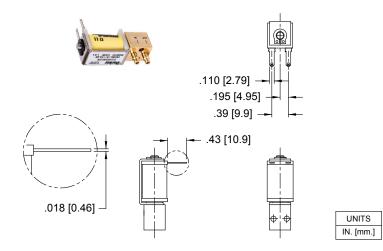
VSO[®] Series 11 Barbed

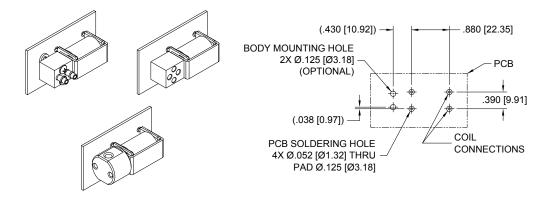

VSO® Series 25 10-32 Threaded


Mechanical Integration

Dimensions

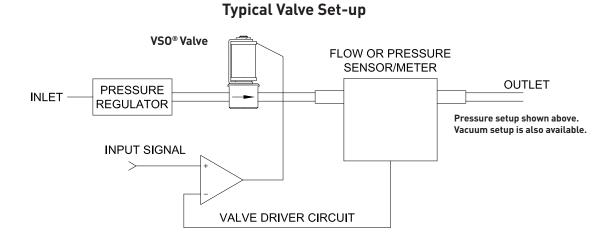

VS0® Series 11 Manifold Mount and Barbed Body Basic Valve Dimensions


VSO® Series 25 10-32 Threaded Body Basic Valve Dimensions



Coil Type: Quick Connect Spade

*PCB Pin Layout (Coil Type 4 PC Pin)



Electrical Requirements

	Table Z	
Minimum Available Voltage (VDC)	Nominal Coil Resistance 🕖 20°C (Ohms)	Input Current for Full Flow (mA)
5.5	11	304
8.0	23	212
11.5	47	152
13.5	68	125
20.0	136	91
29.0	274	66
41.0	547	47
56.0	1094	32

Table 2

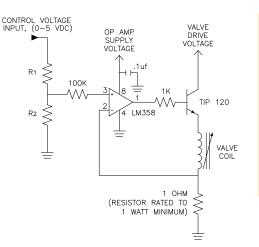
Installation and Use

Valve Electrical Control

Basic Control:

The VSO[®] valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:


For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.

9

Installation and Use

Suggested VSO[®] Current Driver Schematic

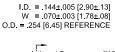
This simple current driver circuit draws only 1 mA at the input control (0-5VDC) and provides control for any VSO® valve configuration regardless of valve voltage or resistance.

Table 3 (below) describes the recommended R1 and R2 resistor values based upon the full shut-off current.

Table 3: Selectable Resistor Values for a Low Current (1 mA) LM358-Based Current Driver

Voltage Supplied to		Nominal Coil			
Valve Coil	Valve Drive	Resistance 🛛	Input Current for	R1	R2
(Reference)	Voltage (VDC)	20°C (Ohms)	Full Flow (mA)	(Ohms)	(Ohms)
5.5	7.5	11	304	5100	330
8.0	10.0	23	212	4990	221
11.5	13.5	47	152	5100	160
13.5	15.5	68	125	4420	113
20.0	22.0	136	91	4420	82
29.0	31.0	274	66	4990	66.5

Manifold & O-Ring Dimensions & Design Not shipped with valves.



Accessories

O-Ring (Manifold Seal) Dimensions

190-007024-002 (2 required for each valve)

Screw 4-40 x 5/8" Pan Head, Phillips

191-000115-010 (2 required for each valve)

Ordering Information

Sample Part ID	VSONC	1	S	11	V	А	F	8
Description	Standard	Model Number: Maximum Operating Pressure / Orifice Size	Series	Body Series	Elastomer/ Body Material	Coil Voltage/Coil Resistance/Coli Current*	Electrical Interface	Pneumatic Interface
Options		1: 150 psi / 0.010° (0.25 mm) 2: 150 psi / 0.020° (0.51 mm) 3: 150 psi / 0.030° (0.76 mm) 4: 75 psi / 0.040° (1.02 mm) 5: 100 psi / 0.060° (1.27 mm) 6: 50 psi / 0.065° (1.65 mm)		25: Series 25	C: FFKM / Brass I: FKM / Stainless Steel H: FFKM / Stainless Steel	B: 8 VDC / 23 Ohm / 0.212 Amp	P: PC Board Mount, 4 Pin Q: Quick Connect, Spade	0: Manifold Mount 1: Manifold Mount w/screens 5: 10-32 Threaded Female (Series 25) 8: 1/8" (3 mm) Barbs

190-007024-002: O-ring, FKM, 0.114" ID x 0.070" Thick* 191-000115-010: Screw 4-40 x 5/8" Pan Head **

* Not supplied with the valve. Used as a seal between the valve body and manifold **Not supplied with the valve. Used to mount the valve to a manifold.

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

Accessories

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button (or go to www.parker.com/precisionfluidics/vso) to configure your VSO® Thermally Compensated Proportional Valve. For more detailed information, visit us on the Web, or call and refer to VSO® Series 11 Performance Spec. #790-002115-001 and Drawings #890-003022-001 and #890-003022-003. VSO® Series 25 Performance Spec. #790-002115-001 and Drawing # 890-003023-001.

11

PPF-MPV-002/US March 2016

VSO[®] LowPro Miniature Proportional Valve

Low Profile Proportional Valve

Markets

- Portable Oxygen Concentrators
- Ventilators
- Patient Monitors

Typical Applications

- Pressure Control
- Volumetric Flow Control
- Pulse Dose Control

Product Specifications

Physical Properties

Valve Type:

2-Way Normally Closed Media:

Air, Oxygen or any non-reactive, non-condensing gases

Operating Environment:

32 to 131°F (0 to 55°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length: 0.80 in (20 mm)

Width:

0.63 in (16 mm)

Height:

0.55 in (14 mm)

Porting:

Face Seal to Manifold with integrated FKM seal

Weight: 0.42 oz (12 g)

jraleu FNIVI Seal 12 g) The VSO® LowPro is a miniature proportional valve that controls the flow rate of inert gases. Typical flow rates up to 50 SLPM with a maximum of 1.5 Watts at room temperature. At just 16 mm wide by 14 mm tall, the valve can be populated into the smallest portable device improving performance, size and weight. With an orifice of up to 0.080" (2.03 mm) and a weight of 12 g, the VSO® LowPro can perform the function of valves three times its size without sacrificing the power. Mounting only requires a simple, machined manifold.

Features

- Very low power required of typically 1 Watt enables portable capability and low power control increasing battery life or reducing the size of your power supply or battery
- Low profile design simplifies mounting and eliminates cartridge configurations that require complex & expensive machining
- Delivers consistent performance on every valve
- Reach, RoHS, ISO 15001, IP65, and CE compliant 🎬 🔬 🤇 🧲

Electrical

Power:

1.0 Watt Typical 2.0 Watt Maximum

Voltage: 5, 12 and 24 VDC See Table 2

Electrical Termination:

4.5" (114 mm) Wire leads [26 AWG] with Molex 50-57-9402 connector

Wetted Materials

Body & Cover: Aluminum 430 Stainless Steel Armature & Spring: Carbon Steel (Nickel Plated) Stainless Steel Coil: Urethane Polyvinyl Butyral All Others: FKM, Epoxy Regulatory:

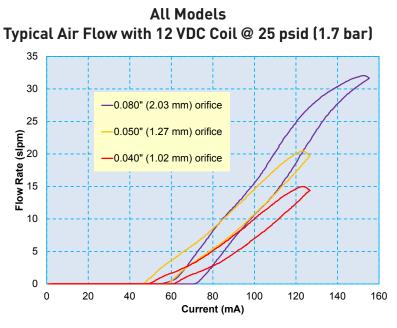
Compliant with RoHS directive (2002/95/EC), REACH EC 1907/2006, ISO 15001, IP65(IEC/EN 60529), and CE

Performance Characteristics

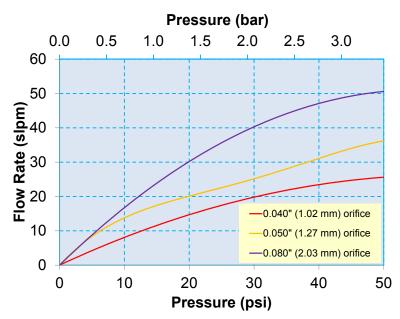
Leak Rate:

The leakage shall not exceed the following values: Internal: 0.5 SCCM of Air with a differential pressure of 50 psid External: 0.2 SCCM of Air with a differential pressure of 50 psid **Operating Pressure:** 0 - 50 psi (3.45 bar) See Table 1 Vacuum: 0-27 in Hg (0-686 mm Hg) **Proof Pressure:** 100 psi (6.9 bar) **Orifice Sizes:** 0.040 in (1.02 mm) 0.050 in (1.27 mm) 0.080 in (2.03 mm) **Hysteresis:** 10% of full scale current (Typical) 15% of full scale current (Maximum) **Recommended Filtration:** 40 µm (not supplied) **Response time:**

10 ms Typical


Reliabilty:

100 Million Cycles


VSO is a registered trademark of Parker Hannifin Corporation. Patent pending with the United States Patent and Trademark Office (USPTO).

VS0[®] LowPro Low Profile Proportional Valve Typical Flow Curve

Pressure vs Flow Curve

The curve below shows the maximum output flow for each orifice size as a function of inlet pressure up to the maximum rated pressure for the valve.

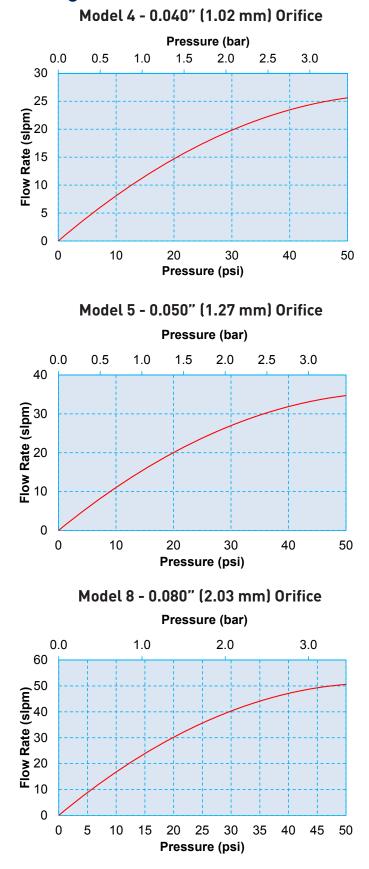
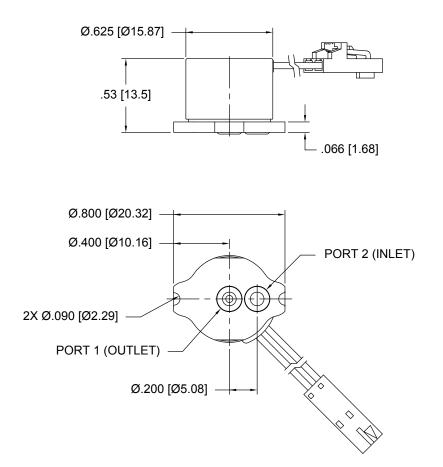

Pressure and Flow Capabilities

Table 1

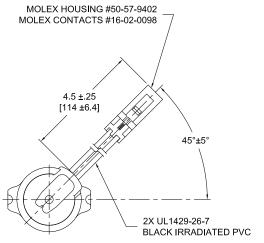
Model No.	Orifice Diameter	Cv at Maximum Pressure	Maximum Inlet Pressure	Maximum Differential Pressure
4	0.040" (1.02 mm)	0.010	50psi (3.45 bar)	50 psig (3.45 bar)
5	0.050" (1.27 mm)	0.025	50 psi (3.45 bar)	50 psig (3.45 bar)
8	0.080" (2.03 mm)	0.062	50psi (3.45 bar)	50 psig (3.45 bar)

VS0[®] LowPro Low Profile Proportional Valve VS0[®] LowPro Sizing Charts



Pneumatic Interface

Mechanical Integration Dimensions



Electrical Interface

UNITS IN [MM]

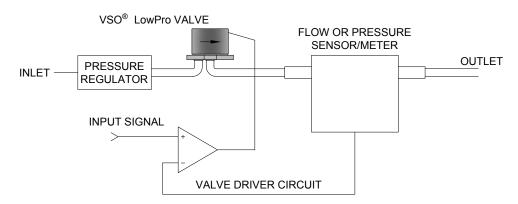

Electrical Requirements

Table 2

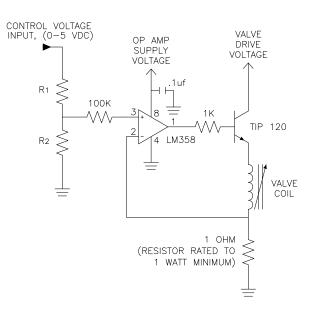
Rated Voltage	Nominal Coil Resistance at 20 °C	Control Current a	t Maximum Flow
		Model 4 & 5	Model 8
5 VDC	10 Ω	311 mA	385 mA
12 VDC	61 Ω	127 mA	156 mA
24 VDC	179 Ω	75 mA	92 mA

Installation and Use

Typical Valve Set-up

Valve Electrical Control

Basic Control:


The VSO[®] LowPro valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency of 10 kHz or greater. Optimum frequency will be application dependent.

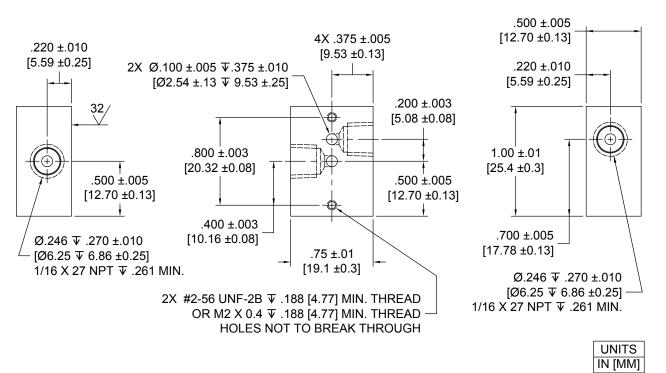
Installation and Use

This simple current driver circuit draws only 1 mA at the input control (0-5VDC) and provides control for any VSO® LowPro valve configuration regardless of valve voltage or resistance.

Table 3 (below) describes the recommended R1 and R2 resistor values based upon the full shut-off current.

Table 3: Selectable Resistor Values for a Low Current (1 mA)LM358-Based Current Driver (Models 4, 5 & 8)

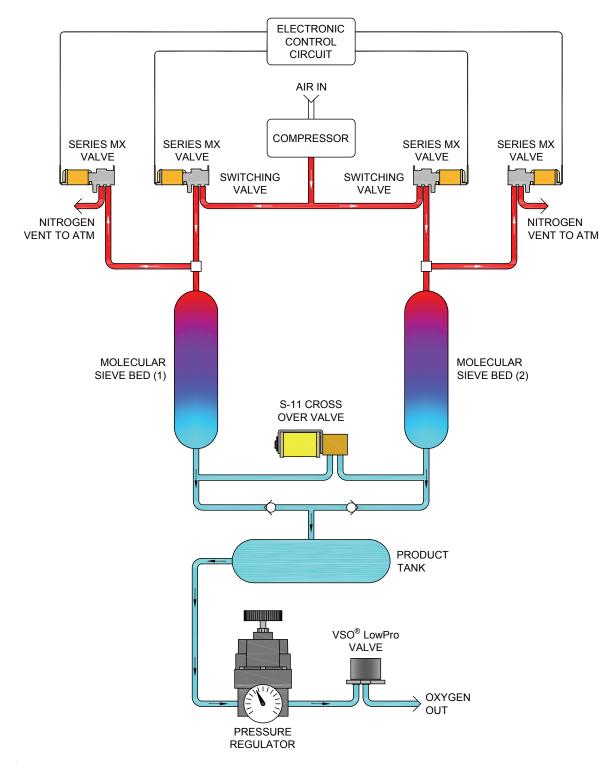
Maximum Solenoid Voltage (VDC)	Circuit Supply Voltage (VDC)	Nominal Coil Resistance @ 20 °C (Ohms)	Maximum Output Current from Circuit (mA)	R1 (Ohms)	R2 (Ohms)
6.0	8.0	10.1	396	4910	422
13.0	15.0	61.3	160	3320	110
22.0	24.0	178.5	94	2100	40.2


Suggested VSO[®] LowPro Current Driver Schematic

Installation and Use

Manifold & Dimensions & Design

Not shipped with valves.


Parker Precision Fluidics recommends 24 in-oz (17 N-cm) of torque for the screws.

Typical Flow Diagram

Oxygen Concentrator Application

12.5" Adapter Wire Leads 290-006061-003

Screw #2-56 x 3/16" Socket Head Cap Screw 191-000112-404 (see valve mounting recommendations above)

Ordering Information

Single Station Manifold 890-009042-001

Manifold O-Ring (FKM) 190-007059-001 (supplied with valve)

Sample Part ID	935		4	0	0	05	0		000
Description	Series	-	Model Number	Pneumatic Interface	Elastomer	Voltage	Electrical Interface		
Options	935		4: 50psi / 0.040" (1.02 mm) 5: 50psi / 0.050" (1.27 mm) 8: 50psi / 0.080" (2.03 mm)	0: Manifold Mount		05: 5 VDC 12: 12 VDC 24: 24 VDC	0: Wire Leads w/ connector	-	000

	Accessories	
290-006061-003: 12.5" Wire Leads	Not supplied with the valve.	
890-009042-001 Single Station Manifold	Not supplied with the valve.	
190-007059-001 Manifold O-Ring (FKM)	Supplied with the valve.	
191-000112-404 Screw #2-56 x 3/16" Socket Head Cap Screw	Not supplied with the valve. See valve mounting recommendations above	

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button to configure your VSO[®] LowPro Proportional Valve (or go to www.parker.com/precisionfluidics/VSOLowProMiniatureProportionalValve). For more detailed information, visit us on the Web, or call and refer to VSO[®] LowPro Performance Spec. 790-002490-001.

PPF-MPV-002/US March 2016

For more information call +1 603 595 1500 or email ppfinfo@parker.com Visit www.parker.com/precisionfluidics

VSO[®] Low Flow

Thermally Compensated Proportional Valve

Typical Applications

- Gas Chromatography
- Mass Spectrometry
- Pressure & Flow Control
- Mass Flow Control

Product Specifications

Physical Properties

Valve Type: 2-Way Normally Closed Media: Air, argon, helium, hydrogen, methane, nitrogen, oxygen, & others

Operating Environment: 32 to 131°F (0 to 55°C)

Storage Temperature: -40 to 158°F (-40 to 70°C)

Length: 1.79 in (45.3 mm)

Width:

0.63 in (15.9 mm)

Height:

0.67 in (17.0 mm)

Porting:

Manifold mount Weight:

2.2 oz (63 grams)

The VSO® Low Flow valve provides enhanced flow control for applications where precise control flow control is required between 0 - 500 sccm. Like the VSO® miniature proportional valve, the VSO® Low Flow miniature proportional valve provides precise flow control of gas in proportion to input current. The valve can be controlled with either DC current or pulse width modulation along with closed loop feedback to deliver optimal system performance. Together with its ability to provide precise control over a wide range of media, the VSO® Low Flow miniature proportional valve is ideally suited for manufacturers of Gas Chromatography and Mass Spectrometry equipment.

Features

- Enables precise low flow (0 500 sccm) control for improved instrument accuracy
- Thermally compensated to maintain precise flow over a wide range of media
- Computer automated calibration and serialization for performance traceability
- Cleaned for Oxygen and Analytical Service use
- Proven performance tested to 10 million life cycles
- RoHS compliant 🖌

Physical Properties

Internal Volume: 0.031 in³ (0.508 cm³) Filtration: 5 Micron (Customer Supplied) Flow Direction: Inlet Port Port 2 Outlet Port Port 1 **Oxygen and Analytically Clean:** Standard Electrical Power: 1.0 Watt maximum Voltage: See Table 2 **Electrical Termination:** 18" (45.7 cm) Wire Leads

Wetted Materials

Body: 360 H02 Brass, 300 Series Stainless Steel

Stem Base: 430 FR Stainless Steel and Brass 360 HT

All Others: FKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values:

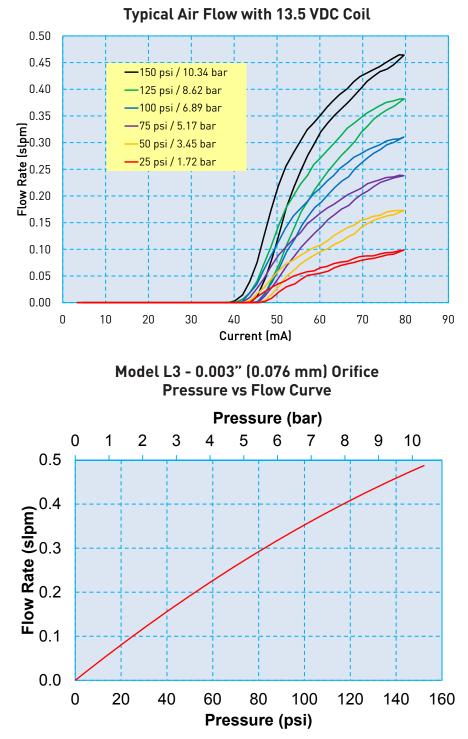
Internal 0.2 SCCM of He with a differential pressure of 1 psid, 25 psid and 150 psid External 0.016 SCCM of He at

150 psi

Pressure: 0 to 150 psi (10.34 bar) See Table 1

Vacuum:

0-27 in Hg (0-686 mm Hg)


Orifice Size: 0.003" (0.076 mm)

Hysteresis:

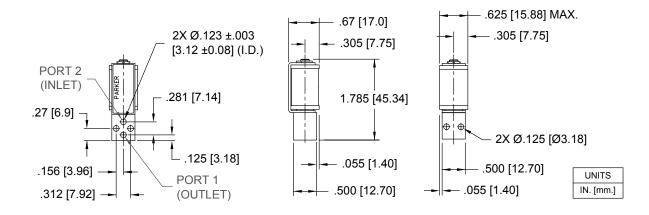
7% of full scale current (Typical) 15% of full scale current (Max)

VSO is a registered trademark of Parker Hannifin Corporation.

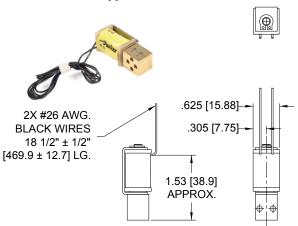
Pressure and Flow Capabilities

Table 1

Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential
0.003 in (0.076 mm)	150 psig (10.34 bar)	150 psid (10.34 bar)


Pneumatic Interface

VSO[®] Low Flow Manifold Mount



VS0[®] Low Flow Basic Valve Dimensions

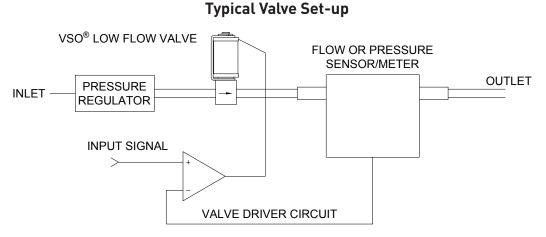
Mechanical Integration Dimensions

Electrical Interface

Coil Type: 18" Wire Lead

Electrical Requirements

Table 2

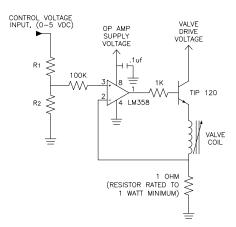

Minimum Available Voltage (VDC)	Nominal Coil Resistance @ 20°C (Ohms)	Input Current for Full Flow (mA)
6.5	47	130
8.0	68	115
12	136	80
18	274	60
24.0	547	43

24

VS0[®] Low Flow Thermally Compensated Proportional Valve

Installation and Use

Valve Electrical Control


Basic Control:

The VSO[®] Low Flow valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

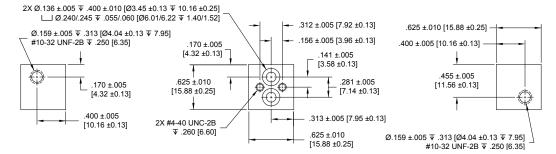
For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.

Suggested VSO® Low Flow Current Driver Schematic

This simple current driver circuit draws only 1 mA at the input control (0-5VDC) and provides control for any VSO® Low Flow configuration regardless of valve voltage or resistance.

Table 3 (below) describes the recommended R1 and R2 resistor values based upon the full shut-off current.

Table 3: Selectable Resistor Values for a Low Current (1mA) LM358-Based Current Driver


Voltage Supplied		Nominal Coil			
to Valve Coil	Valve Drive	Resistance @	Input Current for	R1	R2
(Reference)	Voltage (VDC)	20°C (Ohms)	Full Flow (mA)	(Ohms)	(Ohms)
6.5	8.5	47	130	4990	102
8.0	10.0	68	115	4990	73
12.0	14.0	136	80	5100	34.4
18.0	20.0	274	60	8560	28.7
24.0	26.0	547	43	8560	15.4

VS0[®] Low Flow Thermally Compensated Proportional Valve Installation and Use

Manifold & O-Ring Dimensions & Design

Not shipped with valves.

Accessories

O-Ring (Manifold Seal) Dimensions

190-007024-002 (2 required for each valve)

I.D. = Ø.114 ±.005 [Ø2.90 ±0.13] W = .070 ±.003 [1.78 ±0.08] O.D. = Ø.254 [Ø6.45] REFERENCE

Screw 4-40 x 5/8" Pan Head, Phillips

191-000115-010 (2 required for each valve)

Ordering Information

Sample Part ID	910	- 0	0020	0	-	001
Description	Series	- Body / Elastomer	Model Number	Electrical Interface	-	Coil Voltage*/ Resistance
Options	VSO	0: FKM / Brass 1: FKM / Stainless Steel	VSO Low Flow, 0.003" (0.076 mm) Orifice	0: Wire Leads, 18" (45.7 cm)		001: 6.5 VDC / 47 OHMS 002: 8 VDC / 68 OHMS 003: 12 VDC / 136 OHMS 004: 18 VDC / 274 OHMS 005: 24 VDC / 547 OHMS * Maximum voltage for continuous full flow, ambient temperature 55°C
Accessories						
190-007024-002: O-ring, FKM, 0.114" ID x 0.070" Thick* * Not supplied with the valve. Used as a seal between the valve body and manifold.						

 190-007024-002:
 O-ring, FKM, 0.114" ID x 0.070" Thick*
 * Not supplied with the valve. Used as a seal between the valve body and manifold

 191-000115-010:
 Screw 4-40 x 5/8" Pan Head **
 **Not supplied with the valve. Used to mount the valve to a manifold.

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button (or go to www.parker.com/precisionfluidics/lowflow) to configure your VSO[®] Low Flow Thermally Compensated Proportional Valve. For more detailed information, visit us on the Web, or call and refer to Performance Spec. #790-002160-002 and Drawing #890-003022-022.

PPF-MPV-002/US March 2016

For more information call +1 603 595 1500 or email ppfinfo@parker.com Visit www.parker.com/precisionfluidics

ORDER

VSO[®] – MI Miniature Proportional Valve Thermally Compensated Proportional Valve

Typical Applications

- Ventilators
- Oxygen Concentrators
- Oxygen Conservers
- Anesthesia Delivery & Monitors
- Pressure & Flow Control
- Blood Pressure Monitoring

Product Specifications Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, carbon dioxide, nitrogen, oxygen and helium

Operating Environment: 32 - 140°F (0 - 60°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

1.77 in (44.9 mm)

Width: 0.66 in (16.7 mm)

Height:

0.74 in (18.8 mm)

Porting:

Manifold mount with integrated filters and FKM manifold seals

Weight:

1.23 oz (34.9 g)

Mounting Requirements: See Table 2 The VSO®- MI is miniature proportional valve specifically designed for medical device manufacturers. Based upon Parker Hannifin's benchmark VSO® design, the VSO®- MI miniature proportional valve incorporates thermal compensation to provide precise flow control and stability over a wide operating temperature range. The VSO®- MI miniature proportional valve is oxygen service clean and has been evaluated by registered laboratories to guidelines established within the ISO 10993-1:2009 matrix and USP regulatory standards for bio-compatibility. Together with integrated filtration and manifold seals, low power consumption and its light weight design, the VSO®- MI helps reduce the time and cost of system integration and compliance.

Features

- Thermally compensated to maintain precision flow and accuracy
- Evaluated to established guidelines within the ISO 10993-1:2009 matrix and USP regulatory standards for bio-compatibility
- Proven performance tested to 25 million life cycles
- Integrated filters to protect the valve from damaging upstream and downstream particulates
- Cleaned for Oxygen Service Use
- RoHS compliant 🖌

Physical Properties

Internal Volume: 0.031 in³ (0.508 ↓ m³) Filtration: Integrated 40 m ↓ m filters (inlet and outlet ↓ m filters FIOW Direction: Inlet Port 0 Port 2 Outlet Port 0 Port 1

Electrical

Power: 2.0 Watts maximum Voltage: See Table 3 Electrical Termination:

18.5 in (47 cm) Wire Leads, Quick Disconnect Spade, PC Mount

Wetted Materials

Valve Body: Polybutylene terephthalate (PBT) Stem Base: 430 FR Stainless Steel and Brass C3600 HT

All Others: FKM, 430 FR Stainless Steel, 300 Series Stainless Steel, Brass C3600 HT

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values: Internal 0.2 SCCM of N₂

over rated pressure range External 0.016 SCCM of N₂ at 150 psig

Pressure:

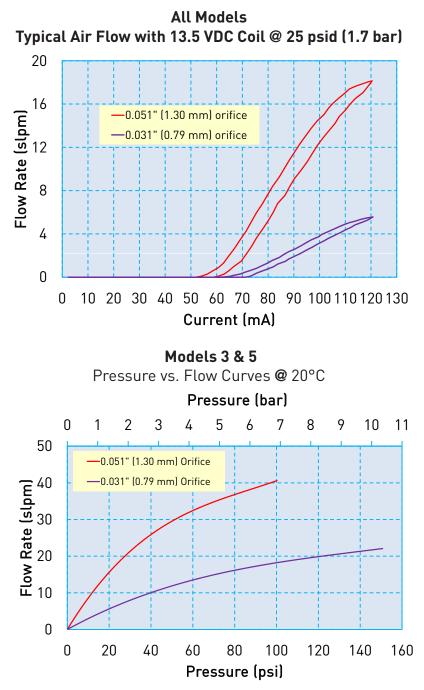
Model 3: 0 to 150 psid (10.34 Bar) Model 5: 0 to 100 psid (6.89 Bar) See Table 1

Vacuum:

0-27 in Hg (0-686 mm Hg)

Orifice Sizes:

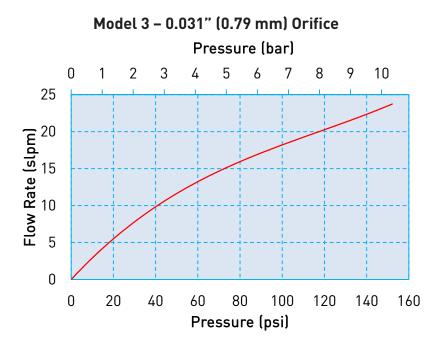
0.031 in (0.79 mm) 0.051 in (1.30 mm)

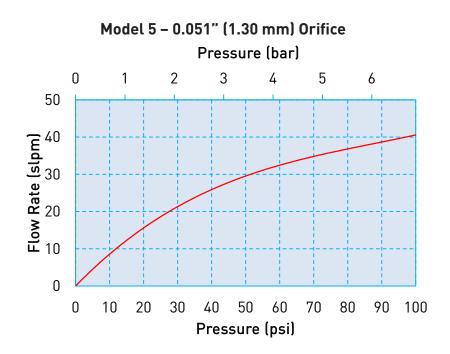

Hysteresis:

7% of full scale current (Typical) 15% of full scale current (Max)

VSO is a registered trademark of Parker Hannifin Corporation.

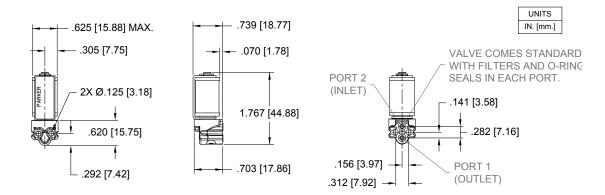
Typical Flow Curve


Pressure and Flow Capabilities


Table 1

Model No.	Orifice Diameter inch (mm)	Cv at Max Pressure	Maximum Inlet Pressure psi (bar)	Maximum Differential Pressure psid (bar)
3	0.031 (0.79)	0.010	150 (10.34)	150 (10.34)
5	0.051 (1.30)	0.025	150 (10.34)	100 (6.89)

VS0[®]- MI Sizing Charts

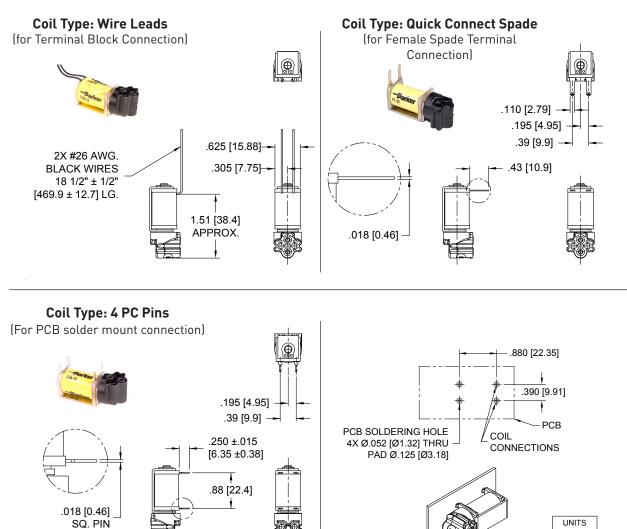

VS0®- MI Miniature Proportional Valve

Pneumatic Interface

Mechanical Integration Dimensions

VSO®- MI Basic Valve Dimensions

Mounting Requirements


Tabl	.e 2
------	------

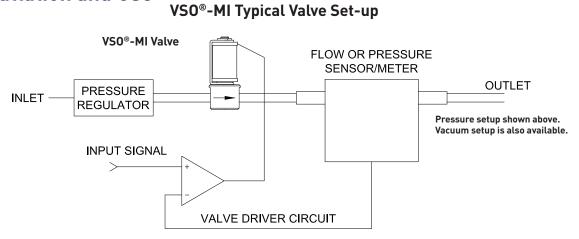
Mounting Screw Sizes (Pan Head Machine Screw)	Mounting Screw Torque	
4-40 x 3/4"	45 oz-in	
M3 x 20 mm	0.32 N.m.	

VSO®- MI Miniature Proportional Valve

Electrical Interface

Electrical Requirements

Table 3


IN. [mm.]

Maximum Supply Voltage (VDC)	Nominal Coil Resistance (Ohms) at 20°C	Control Current at Maximum Flow (mA)
5.5	11	304
13.5	68	125
29	274	66

VS0[®]- MI Miniature Proportional Valve

Installation and Use

Valve Electrical Control

Basic Control:

The VSO[®]-MI valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

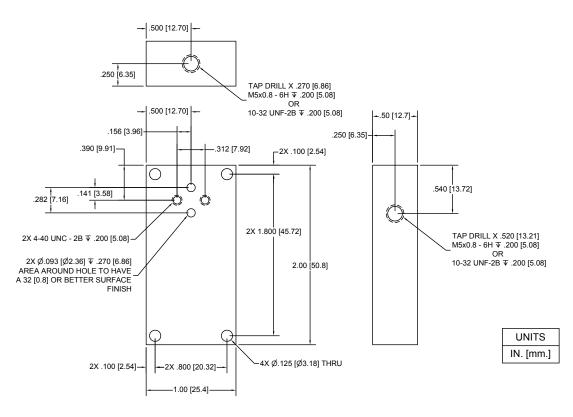
For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.

Suggested VSO[®]-MI Current Driver Schematic

CONTROL VOLTAGE INPUT, (0-5 VDC) VAI VF OP AMP SUPPLY DRIVE VOLTAGE 1uf R1 100K ۱ΛΛ TIP 120 R2 LM358 VALVE -COIL 1 OHM (RESISTOR RATED TO 1 WATT MINIMUM)

This simple current driver circuit draws only 1 mA at the input control (0-5VDC) and provides control for any VSO®-MI valve configuration regardless of valve voltage or resistance.

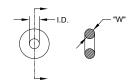
Table 4 (below) describes the recommended R1 and R2 resistor values based upon the full shut-off current.


Table 4: Selectable Resistor Values for a Low Current (1mA) LM358-Based Current Driver

Voltage Supplied		Nominal Coil			
to Valve Coil	Valve Drive	Resistance @	Input Current for	R1	R2
(Reference)	Voltage (VDC)	20∘C (Ohms)	Full Flow (mA)	(Ohms)	(Ohms)
5.5	7.5	11	304	5100	330
13.5	15.5	68	125	4420	113
29.0	31.0	274	66	4990	66.5

VSO[®]- MI Miniature Proportional Valve Installation and Use

Recommended VSO®-MI Manifold Dimensions



Accessories

O-Ring (Manifold Seal) Dimensions

190-007059-001 (2 supplied with each valve)

I.D. = .114 ±.006 [2.90 ±0.15] W = .039 ±.003 [0.99 ±0.08] O.D. = .192 [4.88] REFERENCE

Screw 4-40 x 3/4" Pan Head, Phillips

191-000115-012 (2 required for each valve)

32

Ordering Information

Sample Part ID	931	3	1	1	05	1	000
Description	Series	Model Number: Operating Pressure / Orifice Size	Elastomer / Body	Pnuematic Interface	Voltage/ Coil Selection	Electrical Interface	
Options	931	3: 150 psid / 0.031" (0.79 mm) 5: 100 psid / 0.051" (1.30 mm)	1: FKM / PBT	1: Manifold Mount* *Includes integrated 40 micron filters and FKM manifold seals	13: 13.5 VDC / 68 Ohm	1: Wire Leads, 18" (45.7 cm) 2: Quick Connect, Spade 3: PC Board Mount, 4 Pin	
190-007059-001: O-ri 191-000115-012: Scre	. .	4" ID x 0.039" Thick" 4-40 x 3/4", Stainless Steel**		ve. Used as a seal between the valve valve. Used to mount the valve to a r			RDER N-LINE

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage or Current
- Flow Media & Ambient Temperature Range

Please click on the Order On-line button (or go to www.parker.com/precisionfluidics/vsomi) to configure your VSO®- MI Miniature Proportional Valve. For more detailed information, visit us on the Web, or call and refer to Performance Specification #790-002356-001 and Drawing #890-003292-001.

33

PPF-MPV-002/US March 2016

MD PRO Miniature Proportional Valve

Miniature Proportional Valve

Typical Applications

- 0₂ Concentrators/Conservers
- Ventilators
- Anesthesia Delivery
- Pressure & Flow Control
- Patient Monitors

Product Specifications

Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, & others

Operating Environment: 32 to 140°F (0 to 60°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

1.79 in (45.3 mm) Width:

0.63 in (15.9 mm)

Height:

0.67 in (17.0 mm)

Porting: 1/8" (3 mm) barbs; manifold mount

- Weight:
- 2.2 oz (63 grams)

Internal Volume: 0.031 in³ (0.508 cm³)

Filtration (Suggested and Available):

40 micron

Ir

Inlet Port	Port 2
Outlet Port	Port 1

The MD PRO is a miniature 2-way normally closed (NC) proportional valve that controls gas flow proportionally to input current for flow rates up to 56 slpm. When used with closed loop feedback, the MD PRO is an economical solution that provides repeatable pressure and flow control. The MD PRO is ideal for applications such as respiratory therapy, anesthesia delivery and patient monitoring devices.

Features

- Provides repeatable flow performance over its rated life
- Offers a superior combination of value and performance to reduce system cost
- Available Oxygen and Analytical Service use clean
- Proven performance tested to 10 million life cycles
- RoHs compliant 🖌

Electrical

Power: 2.0 Watts maximum Voltage: See table 2 **Electrical Termination:** 18.5" (47 cm) Wire Leads. PC Mount, Quick Disconnect Spade

Wetted Materials

Body: 360 HO₂ Brass Stem Base: 430 FR Stainless Steel and Brass 360 HT

All Others: FKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values:

Internal 0.2 SCCM of air with a differential pressure of 1 psid, 25 psid and 150 psid

External 0.016 SCCM of air at 150 psi

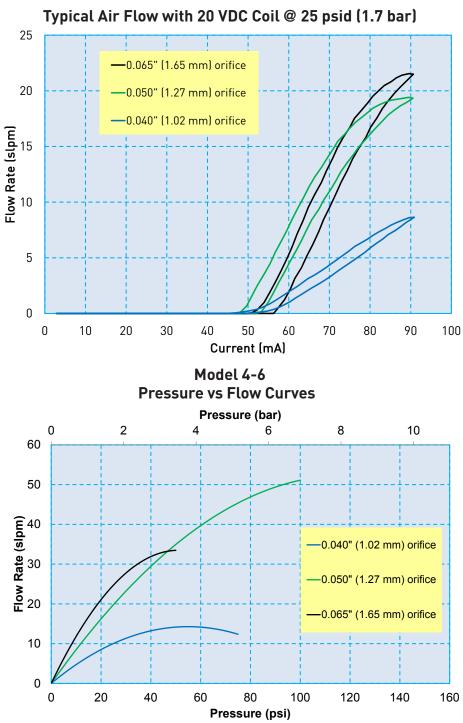
Pressure:

0 to 50 psi (3.45 bar) 0 to 75 psi (5.17 bar) 0 to 100 psi (6.89 bar) See Table 1

Vacuum:

0-27 in Hg (0-686 mm Hg)

Orifice Sizes:


0.040 in (1.02 mm) 0.050 in (1.27 mm) 0.065 in (1.65 mm)

Hysteresis:

7% of full scale current (Typical) 15% of full scale current (Max)

34

Typical Flow Curve

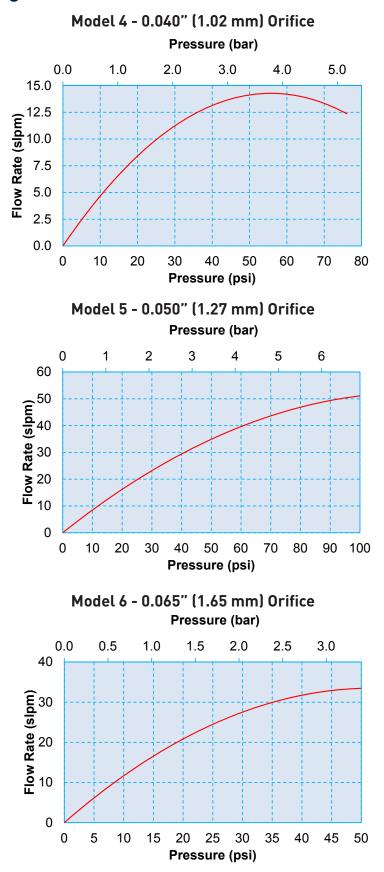
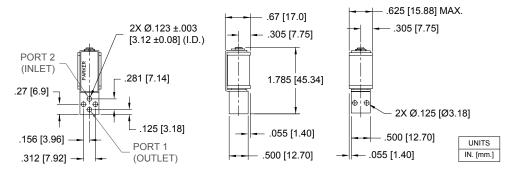

Pressure Capabilities

Table '

Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential
0.040 in (1.02 mm)	150 psig (10.34 bar)	75 psid (5.17 bar)
0.050 in (1.27 mm)	150 psig (10.34 bar)	100 psid (6.89 bar)
0.065 in (1.65 mm)	150 psig (10.34 bar)	50 psid (3.45 bar)

MD PRO Miniature Proportional Valve MD PRO Sizing Charts

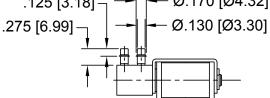
MD PRO Miniature Proportional Valve


Pneumatic Interface

MD PRO Manifold Mount

Mechanical Integration Dimensions

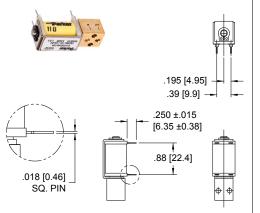
MD PRO Basic Valve Dimensions

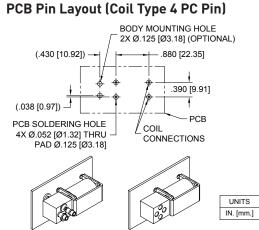

Pneumatic Interface

MD PRO

Barb Options

1/8" (3 mm) Barbs (For 1/8" (3 mm) I.D. Tubing) .125 [3.18] - - Ø.170 [Ø4.32]



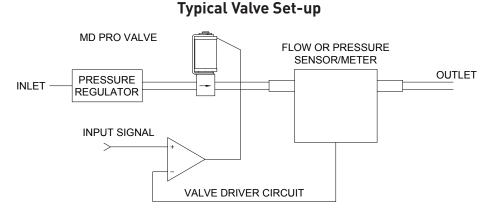

MD PRO Miniature Proportional Valve

Coil Type: Wire Leads Coil Type: Quick Connect Spade **P** .110 [2.79] .195 [4.95] .39 [9.9] – .625 [15.88] 2X #26 AWG. **BLACK WIRES** .305 [7.75] .43 [10.9] 18 1/2" ± 1/2" [469.9 ± 12.7] LG. 1.53 [38.9] APPROX. .018 [0.46] ¢

Coil Type: 4 PC Pin

Electrical Interface

Electrical Requirements


Minimum Available Voltage (VDC)	Nominal Coil Resistance @ 20°C (Ohms)
5.5	11
8.0	23
11.5	47
13.5	68
20.0	136
29.0	274

39

MD PRO Miniature Proportional Valve

Installation and Use

Basic Control:

Valve Electrical Control

The MD PRO valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.

Suggested MD PRO Current Driver Schematic

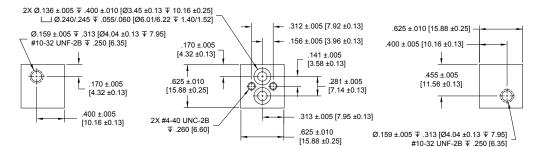
CONTROL VOLTAGE INPUT, (0-5 VDC) VALVE AME DRIVE VOLTAGE SUP 1uf R1 100K ١ΛΛ TIP 120 LM358 R2 VALVE COIL 1 OHM (RESISTOR RATED TO ≶ 1 WATT MINIMUM)

This simple current driver circuit draws only 1 mA at the input control (0-5VDC) and provides control for any MD PRO configuration regardless of valve voltage or resistance.

Table 3 (below) describes the recommended R1 and R2 resistor values based upon the full shut-off current.

Table 3: Selectable Resistor Values for a Low Current (1 mA) LM358-Based Current Driver

Voltage Supplied to Valve Coil	Valve Drive	Nominal Coil Resistance @	Input Current for	R1	R2
(Reference)	Voltage (VDC)	20°C (Ohms)	Full Flow (mA)	(Ohms)	(Ohms)
5.5	7.5	11	304	5100	330
8.0	10.0	23	212	4990	221
11.5	13.5	47	152	5100	160
13.5	15.5	68	125	4420	113
20.0	22.0	136	91	4420	82
29.0	31.0	274	66	4990	66.5

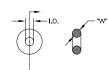


MD PRO Miniature Proportional Valve

Installation and Use

Manifold & O-Ring Dimensions & Design

Not shipped with valves.



Accessories

O-Ring (Manifold Seal) Dimensions

190-007024-002 (2 required for each valve)

I.D. = Ø.114 ±.005 [Ø2.90 ±0.13] W = .070 ±.003 [1.78 ±0.08] O.D. = Ø.254 [Ø6.45] REFERENCE

Screw 4-40 x 5/8" Pan Head, Phillips

191-000115-010 (2 required for each valve)

Ordering Information

Sample Part ID	MDPRO	4	V	Α	F	8	S
Description	Standard	Model Number: Maximum Operating Pressure / Orifice Size	Elastomer/ Body Material	Coil Voltage/Coil Resistance/Coil Current*	Electrical Interface	Pneumatic Interface	
Options		4: 75 psi / 0.040* (1.02 mm) 5: 100 psi / 0.050* (1.27 mm) 6: 50 psi / 0.065* (1.65 mm)		B: 8 VDC / 23 Ohm / 0.212 Amp	F: Wire Leads, 18.5" (47 cm) P: PC Board Mount, 4 Pin Q: Quick Connect, Spade		S: Standard Cleaning O: Oxygen Service

Accessories	ORDER
190-007024-002: O-ring, FKM, 0.114" ID x 0.070" Thick* ** Not supplied with the valve. Used as a seal between the valve body and manifold.	ON-LINE
191-000115-010: Screw 4-40 x 5/8" Pan Head** **Not supplied with the valve. Used to mount the valve to a manifold.	

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button (or go to www.parker.com/precisionfluidics/mdpro) to configure your MD PRO® Non-Thermally Compensated Proportional Valve. For more detailed information, visit us on the Web, or call and refer to Performance Spec. #790-002206-001 and Drawings #890-003022-001 and #890-003022-003.

PPF-MPV-002/US March 2016

For more information call +1 603 595 1500 or email ppfinfo@parker.com Visit www.parker.com/precisionfluidics

Lone Wolf Normally Open Miniature Proportional Valve

Thermally Compensated Proportional Valve

Typical Applications

- Blood Pressure Monitoring
- Vitreo Retinal Surgery

Product Specifications

Physical Properties

Valve Type:

2-Way Normally Open

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, & others

Operating Environment:

32 to 131°F (0 to 55°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C) Length:

1.79 in (45.3 mm)

Width:

0.63 in (16.5 mm)

Height:

0.67 in (17.0 mm)

Porting:

Barbs; manifold mount (with available screens)

Weight:

2.2 oz (62.9 g)

Wolf miniature proportional valve is an ideal choice for medical devices and patient monitoring applications that require rapid response along with stable and accurate performance. Features Provides rapid, stable performance to improve system accuracy

The Lone Wolf miniature proportional valve is a thermally compensated 2-way normally open (NO) proportional valve designed to maintain accurate and repeatable flow over a wide range of media. With the highest performance characteristics of any NO proportional valve available on the market, the Lone

- Enhances system control and patient comfort
- Maintains ideal flow across numerous media types and its entire operating temperature range
- Proven performance tested to 100 million life cycles
- RoHS compliant

Physical Properties

Internal Volume: 0.031 in³ (0.508 cm³) Filtration: (Suggested and Available) 40 micron Flow Direction: Inlat Dort

Inlet Port	Port 1
Outlet Port	Port 2

Electrical

Power: 2.0 Watts maximum Voltage: See Table 2 **Electrical Termination:** 18 in Wire Leads, PC Mount

Wetted Materials

Body: 360 HO₂ Brass

Stem Base: 430 FR Stainless Steel and Brass 360 HT

All Others: FKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values: Internal 0.2 SCCM of He with a differential pressure of 1 psid, 5 psid and 25 psid External 0.016 SCCM of He at

25 psig

Pressure:

0 to 10 psi (0.69 bar) 0 to 20 psi (1.37 bar) 0 to 25 psi (1.72 bar) See Table 1

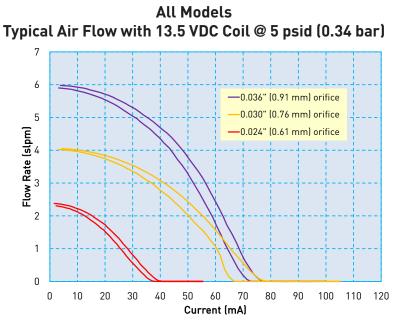
Vacuum:

0-20 in Hg (0-508 mm Hg)

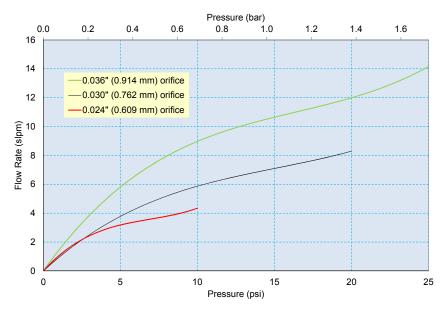
Orifice Sizes:

0.024 in (0.61 mm) 0.030 in (0.76 mm) 0.036 in (0.91 mm)

Hysteresis:


7% of full scale current (Typical) 15% of full scale current (Max)

41


VSO is a registered trademark of Parker Hannifin Corporation.

Typical Flow Curve

Model 1-3 Lone Wolf Pressure vs Flow Curves

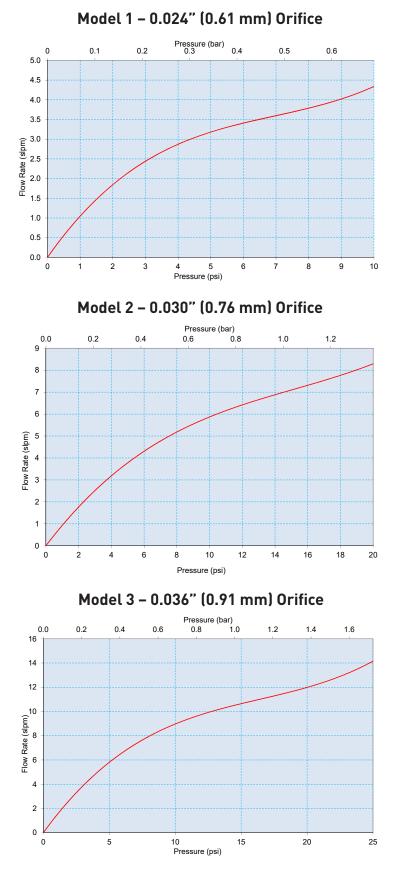

Pressure and Flow Capabilities

Table 1

Model No.	Orifice Diameter in (mm)	Maximum Operating Inlet Pressure psig (bar)	Maximum Operating Pressure Differential psid (bar)
1	0.024 in (0.61mm)	0-25 psig (1.72 bar)	10 psid (0.69 bar)
2	0.030 in (0.76mm)	0-25 psig (1.72 bar)	20 psid (1.37 bar)
3	0.036 in (0.91mm)	0-25 psig (1.72 bar)	25 psid (1.72 bar)

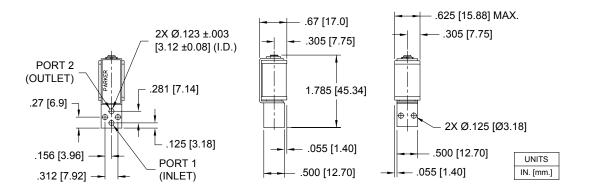
Lone Wolf Thermally Compensated Proportional Valve Lone Wolf Sizing Charts

---Parker

43

Pneumatic Interface

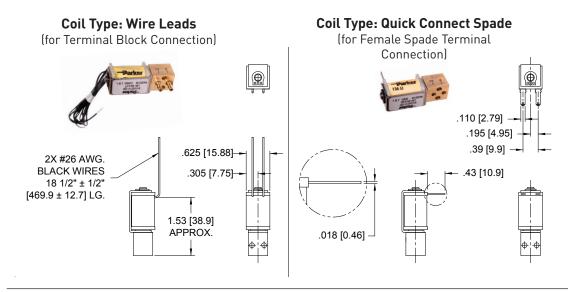
Lone Wolf Manifold Mount



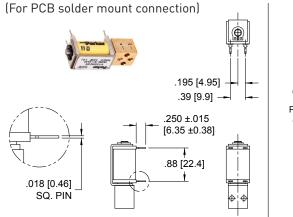

Lone Wolf

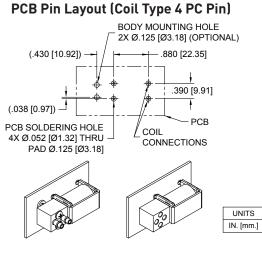
Mechanical Integration

Lone Wolf Manifold Mount and Barbed Body Basic Valve Dimensions



Optional Barb Dimensions





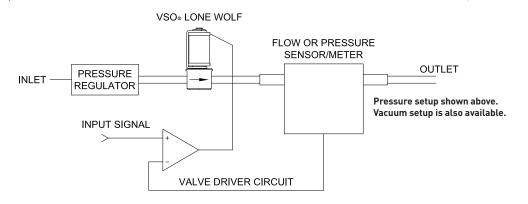
Electrical Interface

Coil Type: 4 PC Pins

Electrical Requirements

Model 1						
0.024" (0.61 mm) orifice						
Minimum Nominal Coil Input Current for						
Available	Resistance @	Full Shut Off				
Voltage (VDC) 20°C (Ohms) (mA)						
3.0	11	184				
4.0	23	128				
5.0	47	92				
6.0	68	76				
9.0	136	55				
13.0	274	40				
18.0	547	28				
24.0	1094	20				

Table	2
-------	---

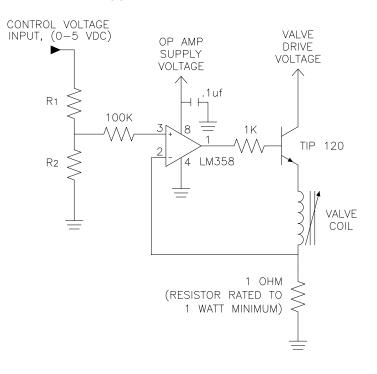

Model 2					
0.030" orifice (0.76 mm)					
Minimum Nominal Coil Input Current for Available Resistance @ Full Shut Off					
Voltage (VDC) 4.0	20 C (Ohms)	(mA) 254			
5.0	23	177			
7.5	47	127			
9.0	68	105			
13.0	136	76			
19.0	274	55			
26.0	547	40			
36.0	1094	27			

Model 3						
0.036" (0.91 mm) orifice						
Minimum	Minimum Nominal Coil Input Current for					
Available	Resistance @	Full Shut Off				
Voltage (VDC)	(mA)					
5.0	11	335				
8.0	23	233				
11.0	47	168				
13.0	68	138				
19.0	136	100				
28.0	274	73				
39.0	547	52				
54.0	1094	36				

Installation and Use

Typical Valve Set-up

Valve Electrical Control


Basic Control:

The Lone Wolf valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.

Suggested Lone Wolf Current Driver Schematic

This simple current driver circuit draws only 1 mA at the input control (0-5VDC) and provides control for any Lone Wolf configuration regardless of valve voltage or resistance.

Table 3 (next page) describes the recommended R1 and R2 resistor values based upon the full shut-off current.

		Model 1				
	0.024" (0.61 mm) orifice					
Voltage Supplied		Nominal Coil				
to Valve Coil	Valve Drive	Resistance 🛛	Input Current for	R1	R2	
(Reference)	Voltage (VDC)	20°C (Ohms)	Full Shut Off (mA)	(Ohms)	(Ohms)	
3.0	5.0	11	184	4816	184	
4.0	6.0	23	128	4872	128	
5.0	7.0	47	92	4908	92	
6.0	8.0	68	76	4924	76	
9.0	11.0	136	55	4945	55	
13.0	15.0	274	40	4960	40	
18.0	20.0	547	28	4972	28	
24.0	26.0	1094	20	4980	20	

Table 3: Selectable Resistor Values for a Low Current (1mA) LM358-Based Current Driver

		Model 2					
	0.030" (0.76 mm) orifice						
Voltage Supplied		Nominal Coil					
to Valve Coil	Valve Drive	Resistance 🛛	Input Current for	R1	R2		
(Reference)	Voltage (VDC)	20°C (Ohms)	Full Shut Off (mA)	(Ohms)	(Ohms)		
4.0	6.0	11	254	4746	254		
5.0	7.0	23	177	4723	177		
7.5	9.5	47	127	4873	127		
9.0	11.0	68	105	4895	105		
13.0	15.0	136	76	4924	76		
19.0	21.0	274	55	4945	55		
26.0	28.0	547	40	4960	40		
36.0	38.0	1094	27	4973	27		

Model 3 0.036" (0.91 mm) orifice					
Voltage Supplied Nominal Coil					
to Valve Coil	Valve Drive	Resistance @	Input Current for	R1	R2
(Reference)	Voltage (VDC)	20∘C (Ohms)	Full Shut Off (mA)	(Ohms)	(Ohms)
5.0	7.0	11	335	4665	335
8.0	10.0	23	233	4767	233
11.0	13.0	47	168	4832	168
13.0	15.0	68	138	4862	138
19.0	21.0	136	100	4900	100
28.0	30.0	274	73	4927	73
39.0	41.0	547	52	4948	52
54.0	56.0	1094	36	4964	36

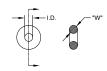
47

Installation and Use

Recommended Manifold Dimensions & Design

Accessories

0-Ring (Manifold Seal) Dimensions


190-007024-002 (2 required for each valve)

I.D. = Ø.114 ±.005 [Ø2.90 ±0.13] W = .070 ±.003 [1.78 ±0.08] O.D. = Ø.254 [Ø6.45] REFERENCE

Screw 4-40 x 5/8" Pan Head, Phillips

191-000115-010 (2 required for each valve)

Ordering Information

LW Sample Part ID Model Number: Body/ Coil Resistance* Description Series Max Operating Pressure Elastomer **Electrical Interface Pneumatic Interface** Material **Orifice Size** 1: 0-10 psi / 0.024" (0.61 mm) Options LW B: Brass V: FKM A: 11 Ohm F: Wire Leads, 18" (45.7 cm) : Manifold Mount 2: 0-20 psi / 0.030" (0.76 mm) B: 23 Ohm PC Board Mount, 4 Pin Manifold Mount w/screens 3: 0-25 psi / 0.036" (0.91 mm) C: 47 Ohm Q: Quick Connect, Spade 1/8" (3 mm) Barbs D: 68 Ohm E: 136 Ohm F: 274 Ohm G: 547 Ohm H: 1094 Ohm *See Table 2: Electrical Requirements to properly reference a coil resistance to the appropriate control voltage for each model Accessories ORDE 190-007024-002; O-ring, FKM, 0,114" ID x 0,070" Thick* * Not supplied with the valve. Used as a seal between the valve body and manifold.

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage

191-000115-010: Screw 4-40 x 5/8" Pan Head

Media & Ambient Temperature Range

Please click on the Order On-line button (or go to www.parker.com/precisionfluidics/lonewolf) to configure your Lone Wolf Thermally Compensated Proportional Valve. For more detailed information, visit us on the Web, or call and refer to Performance Spec. #790-002130-001 and Drawings #890-003079-001 and #890-003079-004.

**Not supplied with the valve. Used to mount the valve to a manifold

PPF-MPV-002/US March 2016

For more information call +1 603 595 1500 or email ppfinfo@parker.com Visit www.parker.com/precisionfluidics

VSO[®] MAX HP Miniature High Flow Proportional Valve

High Flow Proportional Valve

The VSO® MAX HP is a miniature high flow proportional valve that provides maximum flow capabilities greater than 200 slpm @ 45 psi (3.10 bar), while consuming less than two watts of power. The valve delivers a high range of controllable flow while consuming 25% less power than comparable miniature proportional valves. In today's medical device industry, size is an important element. VSO® MAX HP's operating pressure of up to 120 psi (8.27 bar) eliminates the need for an inlet regulator. This translates to a smaller, sleek medical device design and offers potential savings and features three standard control voltage ranges (5, 12 and 24 VDC).

ROHS

Typical Applications

- Delivers a wide range of controllable flow
- Provides repeatable flow performance over its rated life
- Cleaned for Oxygen service use
- Low power consumption generates less heat
- Proven performance tested to 25 million life cycles
- Reach and RoHS compliant

Product Specifications

• Anesthesia Delivery & Monitors

• Pressure & Flow Control

Physical Properties

Mass Flow Control

Valve Type:

Ventilators

Insufflators

2-Way Normally Closed

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, & others

Operating Environment: 41 to 131°F (5 to 55°C)

Storage Temperature: -40 to 158°F (-40 to 70°C)

Length: 2.02 in (51.4 mm)

Width:

0.63 in (15.9 mm)

Height:

0.69 in (17.4 mm)

Porting:

Manifold mount

Weight:

2.45 oz (69.5 g)

Electrical

Features

Power: 2.0 Watts Maximum @ 20°C Voltage: See Table 1 Electrical Termination: 18 in Wire Leads

Wetted Materials

Body: C36000 Brass Stem Base: 430 FR Stainless Steel C36000 Brass

All Others: FKM; 430 FR Stainless Steel; Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values: Internal: 5.0 sccm of Air up to 120 psi (8.27 bar) External: 0.5 sccm of Air up to 120 psi (8.27 bar)

Pressure:

Operating: 0 - 120 psi (0 - 8.27 bar) Proof: 300 psi (20.7 bar)

Orifice Sizes: 0.116" (2.95 mm) effective 0.200" (5.08 mm) actual

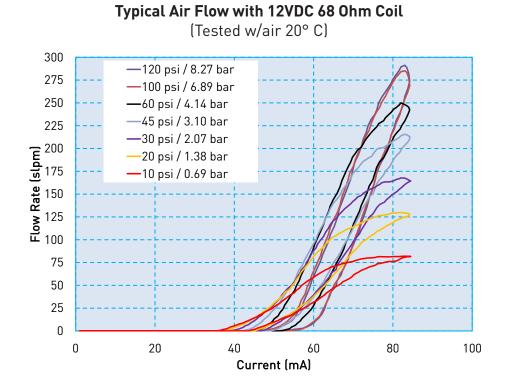
Hysteresis:

7% of full scale current (Typical) 15% of full scale current (Max)

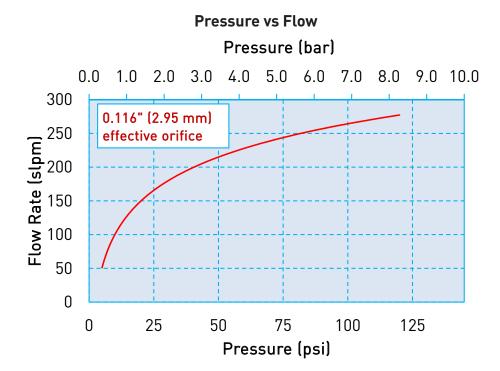
Recommended Filtration:

40 Micron (not supplied)

Response time:

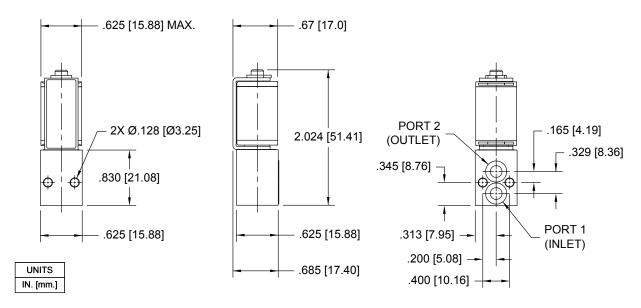

10 ms Typical

Reliability:


25 Million Cycles

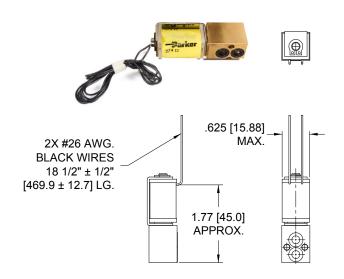
VSO is a registered trademark of Parker Hannifin Corporation.

Typical Flow Curves


VSO[®] MAX HP Miniature High Flow Proportional Valve Pneumatic Interface

VSO® MAX HP Manifold Mount

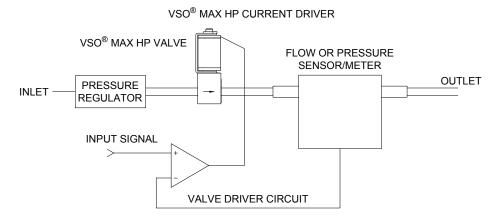
Mechanical Integration Dimensions


VSO® MAX HP Manifold Body Basic Valve Dimensions

Electrical Interface

VSO[®] MAX HP Manifold Mount Coil Type: 18" Wire Lead

Electrical Requirements

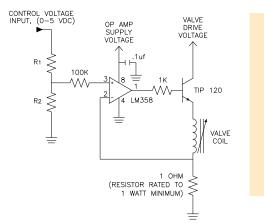

Table 1

Maximum Supply Voltage (VDC)	Nominal Coil Resistance (Ohms) @ 20°C	Control Current at Maximum Flow (mA)
5	11.9	423
12	68.4	170
24	273.6	85

Installation and Use

Typical Valve Set-up

Valve Electrical Control


Basic Control:

The VSO[®] MAX HP valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency of 5 kHz or greater. Optimal frequency will be application dependent.

Suggested VSO[®] MAX HP Current Driver Schematic

This simple current driver circuit draws only 1 mA at the input control (0-5VDC) and provides control for any VSO® MAX HP configuration regardless of valve voltage or resistance.

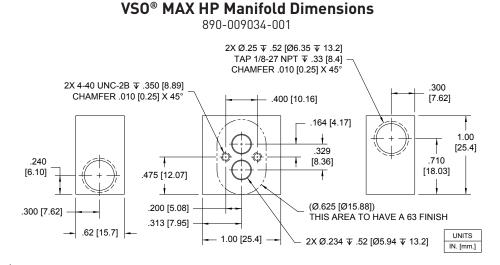

Table 2 (below) describes the recommended R1 and R2 resistor values based upon the full shut-off current.

Table 2: Selectable Resistor Values for a Low Current (1mA) LM358-Based Current Driver

Maximum Solenoid Voltage (VDC)	Circuit Supply Voltage (VDC)	Nominal Coil Resistance @ 20°C (Ohms)	Maximum Output Current from Circuit (mA)	R1 (Ohms)	R2 (Ohms)
5	7	11.9	425	4990	464
12	14	68.4	172	4990	178
24	26	273.6	85	4990	86.6

Installation and Use

Ordering Information

Sample Part ID	921	2	1	1	05	1	000
Description	Series	Туре	Pneumatic Interface	Body /Elastomer	Coil Voltage	Electrical Interface	
Options		2: 120 PSI	1: Manifold Mount		05: 5 VDC 12: 12 VDC 24: 24 VDC	1: Wire Leads, 18" (45.7 cm)	

Accessories
191-000214-002: Screw 4-40 x 7/8" Stainless Steel, Socket Head Cap**
190-007060-001: Spare Manifold Gasket, Quad Ring FKM*
800-009034-001: Manifold, Single Station, 1/8" NPT

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range

Please click on the Order On-line button (or go to www.parker.com/precisionfluidics/vsomaxhp) to configure your VSO[®] Max HP Non-Thermally Compensated Proportional Valve. For more detailed information, visit us on the Web, or call and refer to Performance Spec. #790-002506-001 and Drawing #890-003423-001.

PPF-MPV-002/US March 2016

HFPRO High Flow Proportional Valve

Miniature Proportional Valve

The HF PRO is a miniature 2-way normally closed (NC) high flow proportional valve that controls gas flow proportionally to input current with flow rates up to 60 slpm at 50 psig. The valve can be controlled with either DC current or pulse width modulation along with closed loop feedback to deliver optimal system performance. The HF Pro miniature proportional valve is an ideal choice for applications that require repeatable pressure and flow control such as respiratory and patient monitoring applications.

Features

- Capable of contollable flow rates of up to 60 slpm and pressures of 50 psig
- Provides repeatability across its operating range for improved accuracy
- Available Oxygen Service use clean
- Proven performance tested to 35 million life cycles
- RoHS compliant 💉

Typical Applications

- Ventilators
- 0, Concentrators/Conservers
- Anesthesia Delivery
- Patient Monitors
- Pressure & Flow Control

Product Specifications Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, & others

Operating Environment: 32 to 131°F (0 to 55°C)

Storage Temperature: -40 to 158°F (-40 to 70°C)

Length:

1.785 in (45.3 mm) Width:

0.625 in (15.88 mm)

Height:

0.67 in (17.0 mm)

Porting: 1/4" Barbs, Manifold Mount

Weight:

2.2 oz (62.9 grams)

Physical Properties

Internal Volume: 0.031 in³ (0.508 cm³) **Filtration:** 43 micron **Flow Direction:** Inlet Port Port 2 Outlet Port Port 1 Standard

Electrical

Power: 3.0 Watts maximum Voltage: See Table 2 **Electrical Termination:** 18 in Wire Leads

Wetted Materials

Body: 360 HO2 Brass

Stem Base: 430 FR Stainless Steel and Brass 360 HT

All Others: FKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

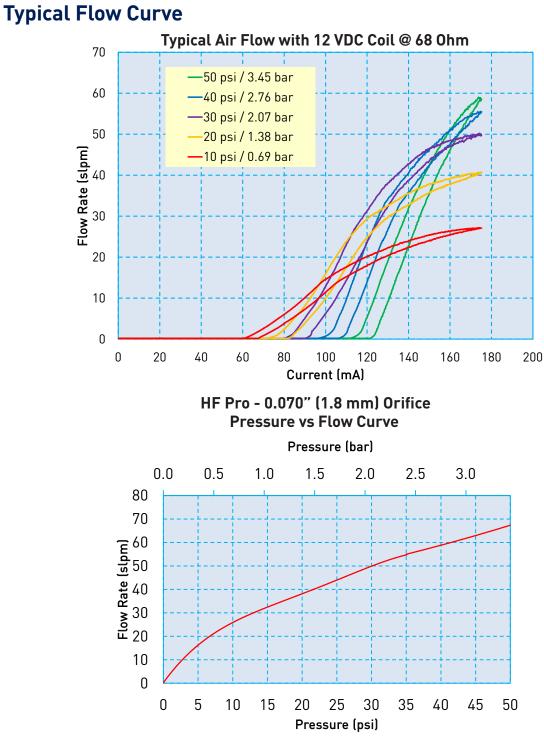
The leakage shall not exceed the following values: Internal 0.5 SCCM of N₂ External 0.016 SCCM of N₂

Pressure: 0 to 50 psi (3.45 bar) See Table 1

Vacuum:

0-27 in Hg (0-686 mm Hg)

Orifice Size: 0.070" (1.8 mm) effective


Hysteresis:

7% of full scale current (Typical) 15% of full scale current (Max)

Oxygen and Analytically Clean:

55

Pressure and Flow Capabilities Table 1

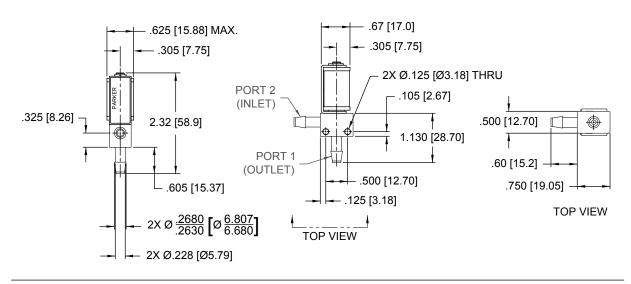
Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential
0.070 in (1.8 mm)	150 psig (10.34 bar)	50 psid (3.45 bar)

56

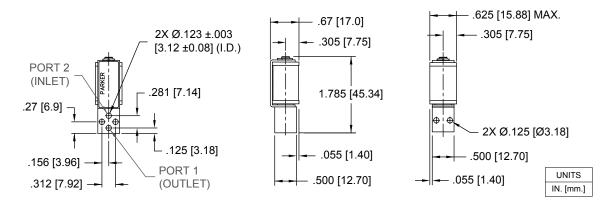
HF PRO Miniature Proportional Valve

Pneumatic Interface

HF PRO Manifold Mount



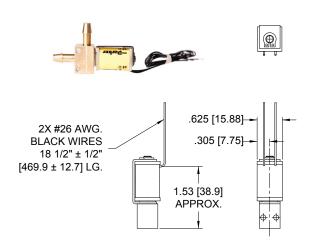
HF PRO


Barbed

Mechanical Integration

HF PRO Barb Mount Basic Valve Dimensions

HF PRO Manifold Mount Basic Valve Dimensions



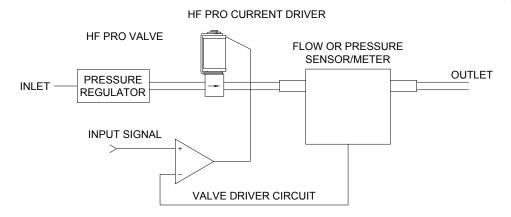
HF PRO Miniature Proportional Valve

Electrical Interface

Coil Type: 18" Wire Lead

Electrical Requirements

Table 2

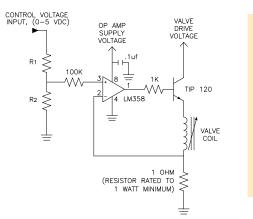

Minimum Available Voltage (VDC)	Nominal Coil Resistance @ 20°C (Ohms)	Input Current for Full Flow (mA)
5	11.9	435
12	68	175
24	274	87

HF PRO Miniature Proportional Valve

Installation and Use

Typical Valve Set-up

Valve Electrical Control


Basic Control:

The HF PRO valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

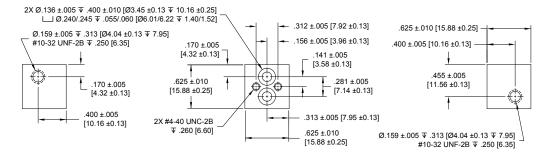
For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.

Suggested HF PRO Current Driver Schematic

This simple current driver circuit draws only 1 mA at the input control (0-5VDC) and provides control for any HF PRO configuration regardless of valve voltage or resistance.

Table 3 (below) describes the recommended R1 and R2 resistor values based upon the full shut-off current.

Table 3: Selectable Resistor Values for a Low Current (1mA) LM358-Based Current Driver


Voltage Supplied to		Nominal Coil	Input Current		
Valve Coil	Valve Drive	Resistance @	for Full Flow	R1	R2
(Reference)	Voltage (VDC)	20°C (Ohms)	(mA)	(Ohms)	(Ohms)
5	7	11.9	435	1000	95.3
12	14	68	175	2260	33.6
24	26	274	87	4990	18.2

HF PRO Miniature High Flow Proportional Valve **Installation and Use**

Manifold & O-Ring Dimensions & Design

Not shipped with valves.

Ordering Information

Sample Part ID	HFPRO	7	V	Α	F	8	0
Description	Series	Model Number: Maximum Operating Pressure / Orifice Size	Elastomer/ Body Material	Coil Voltage*	Electrical Interface	Pneumatic Interface	Cleaning
Options		7: 50 psi / 0.070" (1.78 mm)		A: 5 VDC D: 12 VDC F: 24 VDC *Maximium voltage for continuous full flow, ambient temperture 55°C		1: Manifold Mount 8: 1/4" (6 mm) Barbs	O: Oxygen Service

	Accessories
190-007024-002: O-ring, FKM, 0.114" ID x 0.070" Thick*	*Not supplied with the valve. Used as a seal between the valve body and manifold.
191-000115-010: Screw 4-40 x 5/8" Pan Head**	**Not supplied with the valve. Used to mount the valve to a manifold.

NOTE: In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range.

Please click on the Order On-line button (or go to www.parker.com/precisionfluidics/hfpro) to configure your HF PRO Non-Thermally Compensated Proportional Valve. For more detailed information, visit us on the Web, or call and refer to Performance Spec. #790-002243-001 and HF PRO Barbed Drawing #890-003192-001 and HF PRO Manifold Mount Drawing #890-003191-001.

Value Added Application-Specific Solutions

Gassing Control System

• Mixed gassing logic design includes VSO® proportional valves. X-Valve[®], pressure switch, pressure sensors, and PCB interface

Pneumatic Module

- Integrated valve manifold
- Compact design
- Single electrical
- connection
- Valves configured per specifications

Vacuum Gas Control Module

 Tested to 1 x 10⁷ cc/sec/atm Helium • Assembly tested on mass spectrometer

6 Position VSO[®] Proportional Pneumatic Manifold Assembly

- Quick connect fittings • Circuit board with mass
- electrical termination

Magnum Manifold Assembly

- Integrated circuit board with single connection
- Compact design
- Easily adaptable
- 2 way and 3 way designs

8 Position SRS Model Pneumatic Manifold

- Integrated pressure/
- vacuum sensors Mixed pneumatic
- logic design Ultem[®] manifold pressure/vacuum sensors

10 Position X-Valve® Pneumatic Manifold

- Mixed pneumatic logic design
- Ultra-miniature design with PCB for mass termination

10 Position SRS Model Pneumatic Manifold

- Integrated pressure/ vacuum sensors
- Mixed pneumatic logic design
- Ultem[®] manifold pressure/vacuum sensors

61

NOTES

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY, AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

© 2011 Parker Hannifin Corporation

Parker Hannifin Corporation **Precision Fluidics Division** 26 Clinton Dr., Unit 103 Hollis, NH 03049 phone 603 595 1500 fax 603 595 8080 www.parker.com/precisionfluidics PPF-MPV-002/US March 2016